There's no magic bullet that you've overlooked.
You have what are sometimes called "disjoint subclasses". There's the superclass (Product) with two subclasses (ProductX) and (ProductY). This is a problem that -- for relational databases -- is Really Hard. [Another hard problem is Bill of Materials. Another hard problem is Graphs of Nodes and Arcs.]
You really want polymorphism, where OrderLine is linked to a subclass of Product, but doesn't know (or care) which specific subclass.
You don't have too many choices for modeling. You've pretty much identified the bad features of each. This is pretty much the whole universe of choices.
Push everything up to the superclass. That's the uni-table approach where you have Product with a discriminator (type="X" and type="Y") and a million columns. The columns of Product are the union of columns in ProductX and ProductY. There will be nulls all over the place because of unused columns.
Push everything down into the subclasses. In this case, you'll need a view which is the union of ProductX and ProductY. That view is what's joined to create a complete order. This is like the first solution, except it's built dynamically and doesn't optimize well.
Join Superclass instance to subclass instance. In this case, the Product table is the intersection of ProductX and ProductY columns. Each Product has a reference to a key either in ProductX or ProductY.
There isn't really a bold new direction. In the relational database world-view, those are the choices.
If, however, you elect to change the way you build application software, you can get out of this trap. If the application is object-oriented, you can do everything with first-class, polymorphic objects. You have to map from the kind-of-clunky relational processing; this happens twice: once when you fetch stuff from the database to create objects and once when you persist objects back to the database.
The advantage is that you can describe your processing succinctly and correctly. As objects, with subclass relationships.
The disadvantage is that your SQL devolves to simplistic bulk fetches, updates and inserts.
This becomes an advantage when the SQL is isolated into an ORM layer and managed as a kind of trivial implementation detail. Java programmers use iBatis (or Hibernate or TopLink or Cocoon), Python programmers use SQLAlchemy or SQLObject. The ORM does the database fetches and saves; your application directly manipulate Orders, Lines and Products.